Treating Fat-Soluble Vitamin Deficiencies in Cystic Fibrosis: What are we missing?

Kimberly Stephenson, MS, RD, CSP
University of North Carolina at Chapel Hill
Vitamin Deficiencies

- Deficiencies exist despite routine supplementation

- Clinical Symptoms of Deficiency
 - Vitamin A Night blindness
 - Vitamin D Osteoporosis
 - Vitamin E Neurological abnormalities
 - Vitamin K Bruising and hemorrhage, osteoporosis
Many additional nutrients may be absorbed from the ileum depending on transit time.

CF Vitamin Dosing Guidelines 2018

Listed below is the minimum dosing required of each CF vitamin product to meet consensus recommendations for vitamins A, D, E, & K.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>AquADEK</th>
<th>GamADEK</th>
<th>MVW Complete Formulation</th>
<th>ChoiceFull</th>
<th>H2-Pharma</th>
<th>DEKAs-Plus</th>
<th>DEKAs-Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Dose for CF IV (age levels adjusted accordingly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>12 months</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>1000</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>400</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Vitamin D (IU)</td>
<td>800-2000</td>
<td>200</td>
<td>500</td>
<td>125</td>
<td>400</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Vitamin E (IU)</td>
<td>400-1000</td>
<td>100</td>
<td>250</td>
<td>62.5</td>
<td>150</td>
<td>37.5</td>
<td>93.75</td>
</tr>
<tr>
<td>Vitamin K (mg)</td>
<td>5-10</td>
<td>1.25</td>
<td>3.125</td>
<td>0.78125</td>
<td>2</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>1-2 years</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>1500-3000</td>
<td>375</td>
<td>937.5</td>
<td>234.375</td>
<td>600</td>
<td>150</td>
<td>375</td>
</tr>
<tr>
<td>Vitamin D (IU)</td>
<td>500-1000</td>
<td>125</td>
<td>312.5</td>
<td>78.125</td>
<td>200</td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>Vitamin E (IU)</td>
<td>600-1500</td>
<td>150</td>
<td>375</td>
<td>93.75</td>
<td>400</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Vitamin K (mg)</td>
<td>10-20</td>
<td>2.5</td>
<td>6.25</td>
<td>1.5625</td>
<td>5</td>
<td>1.25</td>
<td>3.125</td>
</tr>
<tr>
<td>3-4 years</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>2000-4000</td>
<td>500</td>
<td>1250</td>
<td>312.5</td>
<td>800</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Vitamin D (IU)</td>
<td>1000-2000</td>
<td>250</td>
<td>625</td>
<td>156.25</td>
<td>600</td>
<td>150</td>
<td>375</td>
</tr>
<tr>
<td>Vitamin E (IU)</td>
<td>800-2000</td>
<td>200</td>
<td>500</td>
<td>125</td>
<td>400</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Vitamin K (mg)</td>
<td>20-40</td>
<td>5</td>
<td>12.5</td>
<td>3.125</td>
<td>10</td>
<td>2.5</td>
<td>6.25</td>
</tr>
<tr>
<td>5-10 years</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
<td>Chew</td>
<td>Liquid</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>3000-6000</td>
<td>750</td>
<td>1875</td>
<td>468.75</td>
<td>1200</td>
<td>300</td>
<td>750</td>
</tr>
<tr>
<td>Vitamin D (IU)</td>
<td>2000-4000</td>
<td>500</td>
<td>1250</td>
<td>312.5</td>
<td>1000</td>
<td>250</td>
<td>625</td>
</tr>
<tr>
<td>Vitamin E (IU)</td>
<td>1200-3000</td>
<td>300</td>
<td>750</td>
<td>187.5</td>
<td>1200</td>
<td>300</td>
<td>750</td>
</tr>
</tbody>
</table>

Notes:

MVW Multivitamin Wholesale Reference List

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>P/N</th>
<th>UPC</th>
<th>Reimbursement Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0444401</td>
<td>Multivitamin Plus Drops</td>
<td>3073030</td>
<td>5555555634-0004-7</td>
<td>S222262</td>
</tr>
<tr>
<td>0444402</td>
<td>Multivitamin Plus Chewable Tablets</td>
<td>3073030</td>
<td>5555555634-0004-7</td>
<td>S222262</td>
</tr>
<tr>
<td>0444403</td>
<td>Multivitamin Plus Softgels</td>
<td>3073030</td>
<td>5555555634-0004-7</td>
<td>S222262</td>
</tr>
<tr>
<td>0444404</td>
<td>Multivitamin Plus Capsules</td>
<td>3073030</td>
<td>5555555634-0004-7</td>
<td>S222262</td>
</tr>
</tbody>
</table>

TABLE 3. Vitamin D intakes and treatment recommendations for vitamin D deficiency in children and adults with CF

<table>
<thead>
<tr>
<th>Age</th>
<th>Routine dosing with CF-specific vitamins (IU)</th>
<th>Step 1: dose increases (IU)</th>
<th>dose titration maximum (IU)</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>>16 months</td>
<td>400-500</td>
<td>800-1000</td>
<td>Not more than 2,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>12 months</td>
<td>800-1,000</td>
<td>1,600-2,000</td>
<td>Not more than 4,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>10 years</td>
<td>1,600-2,000</td>
<td>3,200-4,000</td>
<td>Not more than 10,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>18 years</td>
<td>3,200-4,000</td>
<td>6,400-8,000</td>
<td>Not more than 10,000</td>
<td>Refer</td>
</tr>
</tbody>
</table>

Revised 11-27-18
Vitamin A

- Retinol
- Absorbed in small intestine
- Stored in liver as retinyl esters
- Metabolism
 - Retinol binding protein (RBP) is a carrier protein
 - Zinc needed to make RBP
 - Prealbumin (TTR) is also a carrier protein
 - RBP: vitamin A: prealbumin occur in a 1:1:1 ratio
Vitamin A

- **Deficiency**
 - Night blindness (rhodopsin), poor bone growth, embryonic development, immune function

- **Toxicity (levels 114-143 mcg/dL)**
 - Causes birth defects, bone pain, liver damage, poor growth
 - High levels may occur after lung transplant (Transplantation 2005, 2011)

- **CF vitamins contain retinol and beta-carotene**
 - Beta carotene is converted to retinol in the gut, regulated by body
 - Only retinol could lead to toxicity
Vitamin A - Serum Levels

- Serum retinol
- Ideally
 - No vitamins the morning of lab draw
 - Fasting
 - Non-fasting sample can be ~20% false increase
 - Inquire whether your lab’s reference ranges were derived from fasting or non-fasting samples
 - Pair with fasting for annual OGTT for >10 yrs CF patients
- Mayo Lab Ranges
 - Reference values were established in patients who were fasting
 - 0-6 years: 11.3-64.7 mcg/dL
 - 7-12 years: 12.8-81.2 mcg/dL
 - 13-17 years: 14.4-97.7 mcg/dL
 - > or =18 years: 32.5-78.0 mcg/dL
Vitamin A - Serum Levels

- Do not check level at beginning of exacerbation/hospitalization
- Levels may be falsely low
 - Depression of retinol as an acute phase response
 - Retinol consumption with infection
- Can measure C-reactive protein (CRP) to evaluate
 - If CRP is high, vitamin A value is falsely low
- Duncan et al 2012
 - If CRP > 10 mg/L then retinol level is affected
 - If CRP > 80 mg/L, there is 50% reduction in serum retinol
- Thurnham et al 2003
 - If CRP is high, retinol levels are reduced by 11-24%
- Hakim et al 2007
 - Vitamin A value 28 mg/dL during exacerbation increases to 36 mg/dL at 1-month follow-up with no intervention
Vitamin A - Treating Deficiency

- Verify adherence
- No published CF guidelines
 - Retinoids - no randomised or quasi-randomised controlled studies
 - Beta carotene - one study, few conclusions
- UNC guidelines
 - Double the dose that CF vitamin is providing
 - < 5 years add 10,000 units daily for 3 months then recheck
 - > 5 years add 20,000 units daily for 3 months then recheck
Vitamin A - Treating Deficiency

- Dosing forms
 - Beta carotene - choose to avoid toxicity
 - Retinol (retinyl palmitate) - use for short gut who cannot convert
 - Swallow or pierce gel cap and squeeze out liquid
 - Drops 5,000 units per drop
 - Tri-vi-sol liquid 1ml
 - vitamin A 750
 - vitamin D 400 units
 - vitamin C 35 mg
Vitamin A - Persistent Deficiency

- Evaluate patients with *persistently* low vitamin A
 - h/o Bowel Resection (meconium ileus)
 - beta carotene is converted to retinol in the small intestine
 - use retinol (retinyl palmitate) instead of beta carotene
 - Zinc deficiency
 - Vital for forming RBP as carrier protein for vitamin A
 - If zinc is low, there is not enough RBP to circulate retinol and serum level will be low
 - Liver disease
 - Unable to store vitamin A in liver as retinyl esters

- Labs to check
 - Serum zinc
 - C-reactive protein (CRP)
 - Retinol Binding Protein (RBP)
 - Pre-albumin (transthyretin)
Vitamin A: RBP Molar Ratio

- Convert Vitamin A and RBP to the same units $\text{µmol/L (micro-mol/L)}$
 - Retinol ($\text{µg/dL} \times 0.0349 = \text{µmol/L}$)
 - RBP ($\text{mg/dL} \times 0.476 = \text{µmol/L}$)

- Calculate ratio by dividing retinol by RBP
 - <0.8 is suggestive of deficiency where you could add more
 - $0.8-1.0$ is Normal
 - >1.0 is suggestive of toxicity

- Use the molar ratio of retinol:RBP to guide your dosing
 - If <0.8 then you have free RBP available to bind additional retinol; you can give more
 - If >1, then the retinol is too high in the blood
 - the RPB carrier is saturated
 - may collect in liver and potentially cause liver damage
 - If $0.8-1.0$, then there are good amounts of both; normal state
 - If RBP is low
 - Do not give $>20,000\text{IU}$ vitamin A
 - Consider zinc supplementation to increase RBP synthesis (1-2 mg/kg/day or DRI)
Vitamin A - Drug Interaction

- **Isotretinoin (Accutane®)**
 - Teenage acne, a retinoid
 - For CF, more likely to cause Vitamin A deficiency
 - Counterintuitive (toxicity is not a concern)
 - Presumed that medicine competes with vitamin A
 - Recommend continue usual CF vitamin supplement and measure serum level during treatment

 - 1 of 9 CF patients had night blindness and low serum level

 - 1 of 11 CF case reports had night blindness with Accutane and resolved with increased vitamin A supplementation
Vitamin A - Case Study

KV is 18 yo female, well nourished

- Low vitamin A level for > 1 year
 - AquADEK 2 gel caps daily, compliant
 - Vitamin A 20,000 units daily, added after first low level
- Vitamin A, serum retinol Reference range
 - for >18 yo 32.5 - 78.0 mcg/dL
 - for 14-17 yo 14.4 - 97.7 mcg/dL
- Lab values
 - (7/31/12) 27.6 mcg/dL normal
 - (6/18/13) 17.4 mcg/dL low
 - (7/03/14) 17.3 mcg/dl low
 - RBP 1.60 mg/dL normal, range 1.5 - 6.7
- Calculations
 - Retinol = 17.3 \times 0.0349 = 0.60377
 - RBP = 1.60 \times 0.476 = 0.7616
 - Molar ratio = 0.792
- Because there is more RBP than retinol, you can increase dose of vitamin A supplement.
 - There is plenty of RBP to carry additional retinol
 - RBP is in the normal range
Vitamin A - Case Study

- JK transferred to our CF center, s/p liver transplant
- Low serum vitamin A
 - Transplant center wanted caution with vitamin A to maintain healthy liver
 - High dose supplementation did not improve serum level
 - 3/2017 38,000 units vit A, 20% retinol (2 AquADEK chews + 20,000 beta-carotene)
 - 4/2017 56,000 units vit A, 20% retinol (4 AquADEK chews + 20,000 beta-carotene)
 - 10/2017 32,000 units vit A, 20% retinol (1 MVW gel + 16,000 beta-carotene)
 - 11/2017 34,508 units vit A, 100% retinol (H2Pharma 4ml + 16,000 retinyl palm)
 - MD mentioned history of meconium ileus and intestinal resection
 - Retinol Binding Protein (RBP) <1.3 and vitamin A <5.0
 - unable to calculate ratio; add zinc 1 mg/kg/day
 - 01/2018 Normal level while on 24,000 units vit A, 100% retinol + zinc
 - Normal range, 14.4-97.7 mcg/dL
Vitamin D
Vitamin D

- **Forms**
 - D3 Cholecalciferol
 - D2 Ergocalciferol

- **Sources**
 - diet
 - sunlight

- **Functions**
 - promotes calcium absorption in the gut
 - normal mineralization of bone
 - modulation of cell growth
 - neuromuscular and immune function
 - reduction of inflammation

- **Metabolism**
 - must undergo two hydroxylations in the body for activation
 - liver converts to 25-hydroxyvitamin D, calcidiol
 - kidney forms active 1,25-dihydroxyvitamin D, calcitriol
Vitamin D - Assessment

- Measure serum total 25-OH vitamin D level
 - best indicator of vitamin D status
 - reflects vitamin D produced cutaneously plus from food and supplements
 - has a fairly long circulating half-life of 15 days
 - Reports the sum of D2 and D3
 - Minimum >30 ng/mL (75 nmol/L)
 - Optimal 30-60ng/mL (75-150 nmol/L)
 - Okay up to 100ng/mL (250 nmol/L)
 - Serum PTH rises with Vitamin D < 30 ng/mL
 - Variability based on season and latitude
- Do not measure serum 1,25 vitamin D
 - has a short half-life of 15 hours
 - serum concentrations are regulated by PTH, calcium, & phosphate
 - levels do not decrease until vitamin D deficiency is severe

- Account for current CF vitamin dose when adding more
- Extra supplement required becomes maintenance dose

TABLE 3. Vitamin D intakes and treatment recommendations of vitamin D deficiency in children and adults with CF

<table>
<thead>
<tr>
<th>Age</th>
<th>Routine dosing with CF-specific vitamins (IU)</th>
<th>Step 1: dose increases (IU)</th>
<th>Step 2: dose titration maximum (IU)</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 12 months</td>
<td>400–500</td>
<td>800–1,000</td>
<td>Not more than 2,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>12 months to 10 yr</td>
<td>800–1,000</td>
<td>1,600–3,000</td>
<td>Not more than 4,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>10 yr to 18 yr</td>
<td>800–2,000</td>
<td>1,600–6,000</td>
<td>Not more than 10,000</td>
<td>Refer</td>
</tr>
<tr>
<td>>18 yr</td>
<td>800–2,000</td>
<td>1,600–6,000</td>
<td>Not more than 10,000</td>
<td>Refer</td>
</tr>
</tbody>
</table>
Vitamin D - Treatment

- **D3 Cholecalciferol**
 - Many OTC products in US
 - In “CF vitamins”
 - Tablets and soft gels 400, 1000, 2000, 5,000 units
 - Replesta ® 50,000unit orange flavored wafer
 - D-vi-sol liquid for infants (Enfamil), 400units/ml
 - D-drops from Carlson varying concentrations

- **D2 Ergocalciferol**
 - OTC
 - Tablets or softgels
 - Liquid suspension Calciferol ® Drops, 8000units/mL
 - Prescription
 - 50,000unit capsule, Drisdol ®
Vitamin D - case study

- KDG now 18 yo male with CF, BMI >50thile, on ivacaftor
- Vitamin D less than 30, persistent
- Darker skin, spends most of time indoors
- Vitamin D supplement
 - 7,000 units D3/chole
 - 10,000 units D3/chole
 - 10,000 units D3/chole + 50,000 twice weekly D2/ergo
 - Moderate adherence
- Now considering modified Stoss therapy (high dose given in clinic)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>19</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>21</td>
<td>10</td>
<td>15.7</td>
<td>22.8</td>
<td>24.5</td>
</tr>
<tr>
<td>D2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>D3</td>
<td>19</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>21</td>
<td>10</td>
<td>na</td>
<td>na</td>
<td>Na</td>
</tr>
</tbody>
</table>
Vitamin E
Vitamin E

- Family of tocopherols and tocotrienols
 - exists in eight chemical forms
 - alpha-, beta-, gamma-, and delta-tocopherol
 - alpha-, beta-, gamma-, and delta-tocotrienol
 - alpha tocopherol is the form that can meet human needs
 - liver preferentially re-secretes only alpha-tocopherol

- Functions
 - Antioxidant
 - Immune System
 - Normal neurological function, cognitive development
Vitamin E - Assessment

- Measure “serum Vitamin E”
 - usually alpha tocopherol
 - At UNC, lab is a send out to Mayo who measures alpha-tocopherol

- Serum levels are relative to total lipids
 - confounded by low vs. high cholesterol levels in CF
- Three ratios to adjust for lipids
 - alpha tocopherol : total lipid (cholesterol+triglyceride+phospholipid)
 - alpha tocopherol : (cholesterol + triglyceride)
 - Use for CF adults (normal range 1.42-5.71 mg/g)
 - alpha tocopherol : cholesterol
 - Use for CF children (normal range 3.8-6)
 - Huang SH et al. J Pediatr 2006 Apr
Vitamin E - Evaluation

- Elevated values common post lung transplant
 - Transplantation 2005, 2011
- Falsely elevated levels caused by
 - Non fasting or less than 12-14 hour fast
 - Patient takes vitamins the morning of lab draw
- Falsely low levels caused by
 - Exacerbation (same as Vitamin A)
 - Degradation may occur if sample not protected from light
 - Collected in an amber vial (dark colored) or wrapped
 - Usually lab will not accept if this is case
Vitamin E - Deficiency

- Treat deficiencies
 - No published CF guidelines
 - UNC guidelines
 - < 5 years add 400 units daily for 1-3 months then recheck
 - > 5 years add 800 units daily for 1-3 months then recheck
- Dosing forms
 - Most OTC is alpha tocopherol
 - OTC capsules (swallow or pierce)
 - OTC Aqua-E (Yasoo) 100 units/ml
 - water-soluble form
 - tocopheryl polyethylene glycol-1000 succinate (TPGS)
Vitamin E - Adjusted for Lipids

- Adjusts level for patient’s lipid level
 - High lipids can result in falsely high vitamin E levels
 - Low lipids can result in falsely low vitamin E levels
- Fasting lab draw: Vitamin E, cholesterol, triglycerides

Calculate Ratio (mg/g) = \(\frac{\text{vitamin E (mg/L)}}{\text{Total cholesterol + triglycerides (g/L)}} \)

Interpretation
- Normal range 1.42-5.71 mg/g (adults)
- If < 0.8 mg tocopherol/gm lipid = definite deficiency
- If ratio is normal, then do not change vitamin E dose
- If ratio is low, then increase vitamin E dose (true deficiency)
- If ratio is high, then decrease vitamin E dose (true toxicity)
Vitamin E - Case Studies

Example 1: RT

<table>
<thead>
<tr>
<th>Vitamin E</th>
<th>34.3 mg/L</th>
<th>High, persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>240 mg/dL</td>
<td>High</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>675 mg/dL</td>
<td>High</td>
</tr>
</tbody>
</table>

Calculation

\[
\text{Calculation} = \frac{34.3 \text{ mg/L}}{9.15 \text{ g/L}}
\]

\[
= 3.7 \text{ mg/g normal (range 1.42-5.71 mg/g)}
\]

Her serum vitamin E level is elevated due to high TG and cholesterol. Her current vitamin E dose is adequate and should not be changed.

Example 2: JB

<table>
<thead>
<tr>
<th>Vitamin E</th>
<th>11.4 mg/L</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>174 MG/DL</td>
<td>Normal</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>175 MG/DL</td>
<td>High</td>
</tr>
</tbody>
</table>

Calculation

\[
\text{Calculation} = \frac{11.4 \text{ mg/L}}{3.49 \text{ g/L}}
\]

\[
= 3.2 \text{ mg/g normal (range 1.42-5.71 mg/g)}
\]

She has new onset of neurological symptoms and Neurologist raises concern for Vitamin E deficiency.
Vitamin K
Vitamin K

Two naturally occurring forms of vitamin K

- Vitamin K\textsubscript{1}
 - phylloquinone
 - synthesized by plants & the predominant form in our diet
 - phytonadione is the synthetic form of K\textsubscript{1} (Mephyton)

- Vitamin K\textsubscript{2}
 - menaquinones, a range of vitamin K forms
 - comes from animal sources
 - synthesis by intestinal bacteria

Functions

- Blood clotting
- Bone mineralization

Deficiency: bleeding, bruising, bone disease
Vitamin K

- Deficiency still occurs despite taking CF vitamins

- n=97 CF & PI
- Measured diet, vitamin K supplement, PIVKA-II, %ucOC,
- Patients on “CF vitamins” still showed signs of deficiency
- Only those taking >1000 mcg/day achieved a levels of healthy subjects
- CF vitamin content varies 300 - 1000 mcg
Vitamin K - Lab Assessment

- Measures
 - Indirect: Prothrombin Time
 - a late marker of severe deficiency
 - “cheap” and practical as a first-line assessment
 - high value indicates deficiency
 - Direct: DCP (formerly PIVKA-II)
 - Des carboxy prothrombin (DCP)
 - PIVKA-II: Proteins induced in vitamin K absence
 - high value indicates deficiency
 - early and sensitive marker, more expensive send-out
 - Less useful
 - Serum vitamin K₁: recent intake affects levels in serum
 - Percent Undercarboxylated Osteocalcin (%ucOC): low BMD
Vitamin K - Treatment

- Treat deficiencies
 - No standard guidelines
 - At UNC
 - Give 5mg daily x 2 weeks and recheck PT (inpatient)
 - If no improvement can increase to 10mg daily
 - If no improvement check DCP (PIVKA-II)
 - We often give prophylactic dose with IV antibiotics r/t loss of bacterial production in gut
- Prescription products
 - Tablet 5mg (5,000mcg) and 100 mcg (mephyton, phytonadione)
 - Injectable 2mg/mL and 10mg/mL (aqua-mephyton)
- OTC products
 - Tablets 45 to 500 mcg (common 100 mcg and 200 mcg)
Vitamin K - Case Study

JB

- 18 yo male with CF, PS
- Persistently elevated PT x > 4 values
- On CF vitamin plus 10mg daily phytonadione

Why would a pancreatic sufficient patient require so much vitamin K?

- Check of DCP normal <0.2 (normal, range <6.3)
Vitamin K - Case Study

JG

- 16 yo male with persistently elevated PT
 - Adherent to 10mg daily phytonadione + 2 AquaADEK gels
 - Checked DCP = <0.2 normal (normal range <7.5)

- Hematology workup
 - Differential diagnosis is severe Vitamin K malabsorption or congenital Factor 7 deficiency
 - Given IV vitamin K x 3 doses to r/o malabsorption, but PT same

- PO vitamin K dose decreased to 5mg daily
 - Then decreased to 5 mg three times a week

- For procedures, he is given Novo7 (Coagulation Factor VIIa; recombinant) pre and intra-operatively.
References - Vitamins

References - Vitamins

Fat-Soluble Vitamins

Kimberly Stephenson, MS, RD, CSP
University of North Carolina at Chapel Hill

KimberlyEri.Stephenson@unchealth.unc.edu
984-974-3356